
JOURNAL OF APPROXIMATION THEORY 47,228-239 (1986)

Extensions of Subgradient Projection Algorithms

V. P. SREEDHARAN

Department of Mathemalics, Afichigan Scale University,
East Lansing, Michigan 48824, U.S.A.

Communicated by E. W. Cheney

Received September 4, 1984; revised January 30, 1985

The validity of the subgradient projections algorithms (V. P. SREEDHARAN, J.
Approx. Theory 41 (1984), 217-243; 35 (1982 l. 111-126) is extended by removing
part of the previous assumptions on the objective function. The appropriate
modifications in the algorithms and their proofs of convergence are then given.
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1. INTRODUCTION

The purpose of this note is to extend the range of applicability of the
subgradient projection algorithms for nonsmooth optimization [5, 4 J, with
virtually no change in the algorithms or computations during their
implementations. We use the notation and terminology employed in 1"5].
For the sake of brevity, we do not restate in full the algorithms from
[5, 4J, but refer to [5, 4J for their statements and all details.

In [5J we were given a nonempty, open, convex subset Q in [Rd along
with the convex, differentiable functions f, gi, vj : Q ---+ IR; i = I, ..., m;
j= 1,..., r. We considered the problem of minimizing I(x) + vex), subject to
the constraints gi(X) ~ 0, i = 1,..., m, where

vex) = max{ vAx) I 1~j~ r}

and I was assumed to be strictly convex. We labeled this problem (P). The
aim of adding the strictly convex I to v was to ensure that the objective
function to be optimized was strictly convex, albeit nonsmooth. We
indicate now how this assumption of strict convexity can be deleted. It
turns out that we can take I to be identically zero, with trivial changes in
the algorithms of [5,4]. This includes the case, where I is convex and dif­
ferentiable, but not strictly convex, for in this case we simply redefine vj to
be vj + I for every j.
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2. MAIN RESULT

229

The algorithms of [5,4] are applicable, with very minor changes, to
their respective problems in [5, 4], when the objective function v is the
pointwise upper envelope of a finite collection of differentiable convex
functions as in [5J, or that of a finite collection of affine functions as in
[4], or a mixture of these, as outlined in Algorithm 7.1 of [5]. In other
words, the objective function henceforth will be v, which is nonsmooth and
convex, but not necessarily strictly convex. This is the raison d'etre of this
note. In passing, we also observe that we can weaken the earlier
assumption on the feasibility set

X= 'lXEQ I glx)~O, i= L., m}.

Instead of requiring X to be compact, we can stipulate that the sublevel set

is bounded, where X o is the starting point for Algorithm 4.1 of [5]. This is
equivalent to the assumption that v is coercive on X. Recali that one says
P: X ----> ~ is coercive on X iff X k EX, Ixkl ----> ex => v(Xk) ----> CfJ. We now state
as a theorem a quick verification of the equivalence of these two notions.

2.1. THEOREM. Let v be a real. lower semi-continuous and convex
function on the nonempty, closed, convex set X c ~d and let X o be any point
in X. Then v is coercive on X ([f the sublevel set

So= 'lxEXI v(x)~v(xo)}

is bounded.

Proof We first prove the "if' part. By [6, Lemma 4.1.14] So is boun­
ded iff

is bounded for every integer n ~ 1. If X k E X is such that IXkl ----> elJ, then
given integer n, there exists ko such that Xk ¢. Sn, Vk ~ ko. This shows that
v(Xk»v{xO)+n, Vk~ko. Since the choice ofn was arbitrary, v(xd---->CfJ.

To prove the "only if' part, assume that So is unbounded. Then there
exists X k E So such that IXkl ----> 00. On the other hand, since v(xk ) ~ v(xo),
Vk, V(Xk) -h CIJ, precluding the coercivity of v on X.

From the above theorem we see that the following corollary holds.

2.2 COROLLARY. Let v be a real, lower semi-continuous, convex and coer-
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cive function on a nonempty, closed, convex subset X of [Rd. Then the set of
minimizers of v on X forms a nonempty, compact, convex subset of X.

Proof Let X o E X be arbitrary. By Theorem 2.1 the set So =
{x E X I v(x):(; v(xo)} is compact. So v restricted to So has a minimizer
_\' E So c X. Clearly, "\' is a minimizer of v on X. Again by Theorem 2.1, the
set X* = {x E X I v(x):(; v(x)} is nonempty, compact and convex, proving
the corollary.

The minor alterations to Algorithm 4.1 of [5J, which would allow us to
handle the present more general problem, will now be given below, as
Algorithm 2.3. The step numbers of Algorithm 2.3 correspond to the like
numbered steps in Algorithm 4.1 of [5].

For the appropriate changes and results for the problem in [4J, see the
end of Section 4.

2.3 ALGORITHM.

Steps 1 and 2: Deleted. Start by setting f = 0, throughout.

Steps 3 through 7: Unchanged.

Step 8: Let

Ak = max jVVi(x k )!.
1 ~ j~ r .

Determine Uk> as in Step 8 of Algorithm 4.1 of [5]. At the end of this step,
we will have

Note that, if we are at the stage of executing this step, then M k is positive;
the case M k = 0 would occur only if Yo = 0 in Step 4, in which event the
algorithm would halt at the end of Step 4.

Steps 9 through 12: Unchanged.

Henceforth, when we refer to Algorithm 4.1 of [5J, we will understand
that the modifications indicated in Algorithm 2.3 have been incorporated
into Algorithm 4.1 of [5]. The basic result of [5J, Theorem 6.10 of [5J
will be modified as follows.

2.4 THEOREM. Algorithm 4.1 of [5J (i.e., Algorithm 2.3 above) generates
either a terminating sequence whose last term is a minimizer of problem (P),
or else an infinite sequence such that every cluster point of this sequence is a
minimizer of problem (P).

The proof of Theorem 6.10 of [5J may be repeated, essentially word for
word, to prove Theorem 2.4 the main result of this paper. The only changes
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needed are: put f = 0 throughout, and due to Lemma 3.4 below, assume
that zero is not a cluster point of the sequence (LI k)' Note that the proof in
[5 J already starts out by assuming that zero is not a cluster point of the
sequence (sd and that the sequence (ed does not converge to zero. Also
the sequence (xd generated by the algorithm, appearing in Theorem 6.10
of [5J, is bounded in view of Lemma 3.1 below. The assumption that the
objective function was strictly convex was never used in the proof of the
theorem. The strict convexity asumption entered only through the Lemmas
6.1,6.2, 6.3, 6.6. and 6.8 of [5]. This assumption figured significantly in the
proof of Lemma 6.8 of [5J, which in turn played a key role in proving
Theorem 6.10 of [5]. We shall now make the appropriate restatements of
these lemmas and give proofs wherever necessary. It turns out that, under
the current hypotheses, only Lemma 6.8 of [5J needs a new elaborate
proof. Henceforth, we shall follow the convention that once a lemma of [5 J
has been restated and (or) reproved, then all uses of the original lemma in
[5J will be replaced by the newer version. We emphasize that the newer
version uses the weaker (and more natural) hypotheses, that the objective
function of problem (P) is v = max {v) I 1 ".( j ".( r}, with to coercive on X and
with each v) convex and differentiable on a convex neighborhood of X
Note that convexity plus differentiability of Vi in a neighborhood of X
implies that each vj is continuously differentiable on X.

3. THE LEMMAS

The Lemmas 6.1, 6.2, 6.3, 6.4, 6.6, 6.8 and 6.9 of [5J win be replaced
respectively by Lemmas 3.1, 3.2, 3.3, 3.5, 3.6, 3.7 and 3.8 of this section.

3. L LEMMA. The sequence (xd is bounded, and if some cluster point of
(xd is a minimizer of F, then every cluster point of (xd is a minimizer of F.

Proof Recall that F = v + X, where X is the indicator function of X. By
Corollary 5.23 of [5J, the sequence (F(x,,)) is monotone decreasing. Since
F= v on X, F is coercive on X, and so (xd is bounded. Also, since the
sequence (F(x,,)) is monotone decreasing, all its subsequences converge to
the same limit L = lim F(xk ). So for every cluster point x of (xd, we have
F(x) = L, which implies the lemma.

3.2 LEMMA. Let zero be a cluster point of the sequence (s,,). Then every
cluster point.\' of (x k ) is a minimizer of F.

Proof Using Lemma 3.1, we pass to a subsequence (k'), such that
sk ~ 0 and xk' ~ .X- E X. The proof of Lemma 6.2 of [5] now shows that "x­
is a minimizer of F. Since .X- and .ct are both cluster points of (xd, by
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Lemma 3.1 we conclude that "~ is a minimizer of F, completing the proof of
the lemma.

3.3 LEMMA. If the sequence (Ck) defined in Algorithm 4.1 of [5] con­
verges to zero, then every cluster point .~ of (xd is a minimizer of F.

Proof This proof is the same as the proof of Lemma 6.3 of [5], except
that, having found Yek as in [5], we replace the occurances of (Sk') in the
proof of Lemma 3.2 by Yev' and repeat the proof of Lemma 3.2 to complete
the proof.

The next lemma pertains to Step 8 of Algorithm 2.3.

3.4 LEMMA. If zero is a cluster point of the sequence (LId, then every
cluster point ~\' of (xk) is a minimizer of F.

Proof Using Lemma 3.1, we pass to a subsequence (k'), such that
Llk-+O and Xk,-+XEX. We see that Vv/x)=O, Vj. As in Lemma 5.10 of
[5], this implies that x is a minimizer of F. Then by Lemma 3.1 every
cluster point x of (Xk) is a minimizer of F, completing the proof of the
lemma.

3.5 LEMMA. The sequence (Sk) is bounded.

Proof Since KO(xk) C Kek(Xk)+ Cek(xd,

ISkl = IN[Kek(Xk)+ Cek(xk)]1

::( IN[Ko(xd] I

::(max{IVv)xdlljEJo(Xk)}

::(max{IVv)xk )lll ::(j::(r}

::(max max IVv)x)1
XEXo l:::;;;j~r

where X0 is the closure of the set {xo, Xl' X 2 , ••• }. The right hand side of the
above inequality is finite, since each vj is of class CIon X, and Xo is com­
pact by Lemma 3.1.

3.6. LEMMA. Let the sequences (Iskl) and (Ll k) be bounded away from
zero. Then the sequences (tk) and (Ilk) are both bounded. Moreover, (tk) is
bounded away from zero.

Proof Let
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Then () > 0 and by Step 8 of Algorithm 2.3, we see that

M k = LJ k lukl ~ b IUkl.

Inequality (6.6.1) of [5] now follows, and as in [5] we see that (t k ) is a
bounded sequence. Following the proof of Lemma 6.6 of [5] we see that
Uk) is bounded away from zero.

Now let Xo denote the closure of the set {xo, Xl' x 2 , ... }. We have

where dia(Xo) is the diameter of the set X o. By Lemma 3.1, dia(Xo) is finite.
Since Uk) is bounded away from zero, we conclude that the positive
sequence (~k) is also bounded, completing the proof of the lemma.

The next lemma, which corresponds to Lemma 6.8 of [5J, has its asser­
tion unchanged but its proof is drastically different.

3.7 LEMMA. Let (ed, etc., be as in Algorithm 4.1 of [5]. Suppose that
the sequences (Iskl) and {LJd are both bounded away from zero and that
there exists e> 0 and k o such that ek = E, Vk ~ k o. Then the sequence (tid
converges to zero.

Proof Assume that (~d does not converge to zero. We shall derive a
contradiction. By Lemma 3.6, there exists a subsequence ((Xk') of (a k ) such
that cx k -HX > O. Due to Lemma 3.1 and the boundedness of (Sk) (Lemma
3.5), we can pass to a further subsequence of (k'), again denoted by Ik'),
such that Sk' ---+ s i= 0, x k ' ---+ X E X, and such that there exist index sets J and
J for which

and Vk'. (3.7.1 )

As in Theorem 6.10 of [5J, let us define the sets K(xk,), C(xk ), K* and C'
by the following equations:

K(Xk') = conv{Vvj(xd I j E J},

C(Xk,)=cone{Vgi(xk,) I iEI},

K*=conv{Vv)x) IjEJ},

and

C*=cone{Vdx ) liEn

By the definition of Sk',

(3.7.2)

(3.7.3)

(3.7.4)

(3.7.5)

(3.7.6 )
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Due to the nearest point inequality [5, Eq. (3.7)] and (3.7.6) above, we see
that

sk,(I AjVVixd+ I /1Sg;(Xk'))~ISk'12,
jEJ lEI

(3.7.7)

for all Aj, /1;~0 with LjEJAj = 1. For fixed (Aj ) and (/1;), we allow k'--+ C'fJ

in (3.7.7) to get the inequality

s(I AjVVix )+ I flSg;(X») ~ Is1 2
.

jEJ iEI
(3.7.8)

Inequality (3.7.8) is exactly the inequality derived after equation
(6.10.10) in [5]. In [5] we stated that this inequality yielded the assertion

s=N[K*+C*], (3.7.9)

which in turn was invoked to derive inequalities (6.10.12) and (6.10.15) in
[5]. As in [5], what we need here also are the inequalities corresponding
to (6.10.12) and (6.10.15) of [5]. We now make the following observation,
which obviates (3.7.9).

By Lemma 5.4 of [5], Jo(x)cJ and Io(x)cI, so that Ko(x)cK* and
CoCt) c C*. Setting all /1i equal to zero in (3.7.8), we get the inequality
sY~lsI2, when Y=LjEJAjVVix), Aj~O, L jEJ Aj =1. This yields the
inequality

(3.7.10)

We also have the inequality

(3.7.11)

For, if there exists some index P E IoC\:) such that sVgp(x) < 0, we fix all the
A/s, set /1;=0, ViEI\ {p}, and allow fl p --+ 00 in (3.7.8) to see a contradic­
tion. So we have verified that (3.7.11) prevails. The above observation
shows that reference to (3.7.9) here (and in [5] the reference to Eq.
(6.10.11) there) can be avoided to derive Eqs. (3.7.10) and (3.7.11).

By (5.8.1) of [5] we have,

P(x;-s)= -min{ys IYEKo(x)}

~ -lsI 2
, by (3.7.10). (3.7.12)

We now distinguish two cases.

Case 1. Let us consider first the simpler situation where Iek,(Xk') is
empty for an infinity of indices in the subsequence (k'). Passing to a further
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subsequence of (k'), again denoted by (k'), we can require that Iek(xk ,) be
empty for every k'. In this case, due to Step 8 of Algorithm 4.1 of [5],
Uk'=O, Vk', so that tk,=Sk" Hence

(3.7.13)

This shows that x - as and x are both cluster points of the sequence (xd:
but (F(xk)) is monotone decreasing, and so we get

F(x- as) = F(x). (3.7.14;

Since IeJ'Ck ·) is empty for every k', I is empty and so IoC"') is also empty.
Hence -5 is a feasible direction at x. Due to (3.7.12) we also see that -5 is
a direction of strict descent for F at x. The remainder of the proof of this
simpler case will be merged shortly with that of Case 2 below.

Case 2. We now consider the case where the subsequence (k') is such
that Iek(xd = [,(xd are nonempty, for all sufficiently large k'. Lemma 6.7
of [5] now applies, and so by Eqs. (6.7.1) and (6.7.2) of [5], we can pass
to a further subsequence of (k'), which we again denote by (k') so that
Uk' -+ U, lui? 1. By Step 8 of Algorithm 2.3,

M k · = (max IVvixk)l) Iukl.
l~j~r

(3.7.15 )

Since each vj is of class C l
, with (Ll k ) bounded way from zero, we see that

j'vfk -+ 1'vf, where

M = (max IVVk'C) I) lui> O.
1~]~r .

By Step 9 of the algorithm,

Ak = ISkf/(2Mk, + 1) -+ IsI 2/(2M + 1) = A.

By Lemma 3.6, (tk) is bounded away from zero. Hence

and

(3.7.16)

(3.7.17)

(3.7.18)

(3.7.19)

Due to (3.7.19), x - rt.t and x are cluster points of (x k ), and so, as in Case L
we get

640'47/3-5

F(x - rt.t) = F(x). (3.7.20)
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We now show that - t is a feasible direction of strict descent for Fat x. By
(5.17.2) of [5], for every iElo(x) we have

and so in the limit

>0, by Lemma 5.16 of [5]. (3.7.21 )

Inequalities (3.7.11) and (3.7.21), by virtue of Lemma 5.18 of [5], show
that - t is a feasible direction of x. Due to (3.7.16)

(max IVlJ;(x)l) lui :'S; M,
jEJolx) "

whereas by (5.8.1) of [5] we have

P(x; -u) = max {-Vv.;(x) u}.
;EJo(xl

Combining (3.7.22) and (3.7.23) we see that

P(x; -u):'S; M.

(3.7.22)

(3.7.23)

(3.7.24)

Due to (3.7.18), the sublinearity of the function ZI-+P(x; z), and the fact
that A> 0, we have

P(x; -t):'S; P(x; -s) + AP(x; -u),

:'S; -lsI 2 +lsI 2 M/(2M+l),

< -lsI 2/2<0.

(3.7.25)

(3.7.26)

(3.7.27)

In arriving at (3.7.26) from (3.7.25), we used (3.7.12), (3.7.17) and (3.7.24).
Inequality (3.7.27) shows that - t is a direction of strict descent for F at x,
completing our verification of the assertion that - t is a feasible direction of
strict descent at x. Parenthetically, we note that we have now reproved the
inequalities (6.10.12), (6.10.14) and (6.10.15) of [5].

Recall that in Case 1, t=s and so (3.7.14) is the same as (3.7.20). We
have, therefore, shown that (3.7.20) holds, and that -t is a feasible direc­
tion of strict descent at x, irrespective of whether Case 1 or Case 2 prevails.
So, there exists 6> 0 such that

X-(JtEX and F(x-(Jt) <F(x), V(JE (0, 6]. (3.7.28)
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By Step 11 of Algorithm 4.1 and Lemma 5.22 of [5J,
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(3.7.29)

Since ak' ---+ a > 0, iik,~ ak,~ al2 > 0, Vk' sufficiently large. So we can find a
fixed ). such that 0 < A:::; band 0 < A~iik' Vk' sufficiently large. With this
choice of A, allowing k' ---+ VJ in (3.7.29) yields the inequality

F(x - at):::; F(x - h),

whereas, because of (3.7.28), we also have

F(x -A.t) < F(x).

Combining (3.7.30) and (3.7.31) we get the inequality

F(x-,y,t) < F(x),

contradicting (3.7.20); and the proof of the lemma is complete.

(3.7.30 )

(3.7.31 )

/3.732)

3.8. LEMMA. Let (ed, (Sk)' etc., be as in the algorithm. Suppose that
there exists 10 > 0 such that 10k = 10 > 0 eventually and such that rhe sequences
(Iskl) and (Jd are borh bounded away from ::ero. Let the subsequence (xd
be such that X k , ---+ x E X. Then there is a subsequence of (k'), again denoted
by (k'), such that [O(Xk') = [O(x) for all k'.

Proof This is Lemma 6.9 of [5], and the proof given there carries over
verbatim, if we redefine M occurring in the proof of that lemma by

M = sup IVglxkll.
k

By Lemma 3.1 the sequence (x k ) is bounded, and hence AI is finite. Com­
bining this with Lemma 5.16 of [5], we see that 0 < M <x. The changes
required in the proof of this lemma are now complete.

4. OTHER MINOR CHANGES

4.1. Note also the minor change in Lemma 5.22 of [5]. We cannot any
longer assert that iXk is unique. A similar remark applies to Lemma 5.13 of
[4] also. The more elaborate reasoning used in Lemma 3.7 may be used to
reprove Lemma 5.19 of [4], with f set identically zero there. The required
alterations in proof are similar, but clearly simpler. One can then modify
the statement of Theorem 5.23 of [4] in the same manner as Theorem 2.4
of Section 2. More explicitly: Let (P) be the problem of minimizing a
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piecewise affine, convex function v, subject to a finite collection of affine
constraints. Assume that v is coercive on the feasibility set X. We have the
following theorem.

4.2 THEOREM. The Algorithm 4 in [4] generates a sequence which either
terminates at a minimizer ofproblem (P) or else clusters only at minimizers
of problem (P).

Finally, we can combine Theorems 2.4 and 4.2 into a single theorem, and
thus generalize Algorithm 2.3 in the spirit of Algorithm 7.1 of [5] to the
case of mixed constraints. Let g! ,..., gp all be nonaffine, convex and differen­
tiable on Q and let gp + ! , ... , gm be affine. The algorithm corresponding to
Algorithm 2.3 is contained in the following theorem.

4.3. THEOREM. Let v be as in Section 2, g! ,..., gp nonaffine, convex and
differentiable, and gp+!, ...,gm affine. Suppose that generalized Slater's con­
straint qualification (GSQ) (as explained in Section 7.1 of [5]) holds. Define
the index set I in Steps 8 and 10 of Algorithm 2.3 as in the corresponding
steps of Algorithm 7.1 of [5]. Then the generated sequence (Xk) either ter­
minates at a global minimizer, or is such that every cluster point of (xd is a
global minimizer of the problem (P).

The minimizers in the Theorems 2.4, 4.2 and 4.3 need not be unique.

5. NUMERICAL RESULTS

We had suspected all along that the algorithms in [5] and [4] produce
cluster points all of which are solutions of problem (P), even when the
objective functions are not strictly convex. In fact, many of the numerical
examples tested by both Rubin [3] and Owens [2] have objective
functions that are not strictly convex. Rubin, after successfully solving two
examples of Wolfe [7] (which had f=O) using the algorithm in [4],
remarked in [3, p. 326] that the algorithm in [4] is not guaranteed to con­
verge since the objective function is not strictly convex. Owens [2] applied
the algorithm in [5] to Wolfe's [7] examples and Dem'yanov and
Malozemov's [1] 'jamming" example, all of which had objective functions
that are not strictly convex, and found that the algorithm in [5] con­
verged, i.e., cluster points are solutions of problem (P). See [2] for more
details.
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